(10 pts) 1. Consider the following set

\[A = (0, 1) \cup \{-n, n = 1, 2, \ldots\} \]

Determine if the set is open, closed, has isolated points or not. Provide explanation for each answer. Find all the limit points of the set. Find the closure of \(A \).

(10 pts) 2. Verify, using the definition of convergence of a sequence, that the following sequence converges to the proposed limit

\[\lim_{n \to \infty} \frac{\sin(n^2)}{\sqrt{n}} = 0. \]

(10 pts) 3. Provide a proof for each of the statement below or explain why the request is impossible.

(a) A sequence of continuous functions \(f_n \) converging uniformly to the function

\[f(x) = \begin{cases}
0 & x \geq 0 \\
1 & x < 0
\end{cases} \]

on the interval \([-1, 1]\).

(b) An absolutely convergent series \(\sum a_n \) implies that \(\sum \frac{a_n}{n} \) is also convergent.

(c) There exists a power series \(\sum a_n x^n \) converging for all \(x \geq 0 \) but divergent at \(x = -1 \).

(d) If a power series \(\sum a_n x^n \) with positive coefficients \(a_n \geq 0 \) converges conditionally at \(x = -1 \), then it diverges at \(x = 1 \).

(10 pts) 4. Derive the Taylor series of \(\cos(x) \). Show that the series converges to \(\cos(x) \) at every point.

(10 pts) 5. Let \(g \) be a differentiable function function on interval \([0, 3]\). Suppose we know that \(g(0) = 1 \), \(g(2) = -1 \), \(g(3) = 2 \).

(a) Show that there exists a point \(a \in [0, 3] \) such that \(g(a) = 0 \);

(b) Show that there exists a point \(b \in [0, 3] \) such that \(g'(b) = 1/3 \);

(c) Show that there exists a point \(c \in [0, 3] \) such that \(g'(c) = -1 \);

(10 pts) 6. Give the definition of a Riemann integrable function on \([a, b]\). Show that \(f(x) = x \) is Riemann integrable on \([0, 1]\) and find its integral.

(10 pts) 7. Let \(F(x) = \int_0^x f(t)dt \), and assume that \(f \) is a Riemann integrable function with \(f(t) > 2 \) for all \(t \). Show that \(F(1) > 2 \), and prove that \(F \) attains value 1 on the interval \((0, 1)\).