(10 pts) 1. (a) State the Mean Value Theorem.
 (b) State the definition of a continuous function f at a point a.

(10 pts) 2. Show that $\cos\left(\frac{1}{x}\right)$ is continuous on the interval $(0, 1)$ but not uniformly continuous on the same interval. You can use any available theorems you learned in class.

(10 pts) 3. Consider the following set

 $$A = (-1, 0) \cup \left\{\frac{1}{n}, n = 1, 2, \ldots\right\}$$

 Determine if the set is open, closed, has isolated points or not. Provide explanation for each answer. Find all the limit points of the set. Find the closure of A.

(10 pts) 4. Prove using the definition of the derivative that

 $$(x^3)' = 3x^2.$$

(10 pts) 5. Let g be a differentiable function function on interval $[0, 2]$. Suppose we know that $g(0) = 2$, $g(1) = -1$, $g(2) = 1$.
 (a) Show that there exists a point $a \in [0, 2]$ such that $g(a) = 0$;
 (b) Show that there exists a point $b \in [0, 2]$ such that $g'(b) = -1/2$;
 (c) Show that there exists a point $c \in [0, 2]$ such that $g'(c) = 0$;